Lecture 4: Predictive Method

0

- The predictive method:
 - provides a structured methodology to estimate the expected average crash frequency (by total crashes, crash severity or collision type) of a site, facility or roadway network.
 - A site: a homogenous roadway segment or an individual intersection.
 - e.g., divided or undivided roadway segments, signalized or unsignalized intersections.
 - A facility: consists of a contiguous set of individual intersections and roadway segments.
 - e.g., rural two-lane two-way roads, multilane highways, urban and suburban arterials.
 - A road network: consists of a number of contiguous facilities.

. . .

- The predictive method:
 - can be used for evaluating and comparing the expected average crash frequency of situations like:
 - Existing sites/facilities/networks under past or future traffic volumes;
 - Alternative designs for an existing site/facility/network under past or future traffic volumes;
 - Designs for a new site/facility/network under future (forecast) traffic volumes;

- Procedures:
 - First, the predicted average crash frequency of an individual site ($N_{predicted}$) is estimated based on the geometric design, traffic control features, and traffic volumes of that site, using statistical models developed from data for a number of similar sites.
 - The estimate is for a given time period of interest during which the geometric design and traffic control features are unchanged and traffic volumes are known or forecast.
 - The estimate relies upon statistical models developed from data for a number of similar sites.

- Procedures:
 - For an existing site, <u>the observed crash frequency</u> $(N_{observed})$ for that specific site is then combined with $N_{predicted}$ to improve the statistical reliability of the estimate.
 - The result from the predictive method is <u>the expected</u> <u>average crash frequency</u> $(N_{expected})$ of that site.
 - The cumulative sum of all sites is used as the estimate for an entire facility or network.

- The predictive models vary by site and facility type but all have the same basic elements:
 - Safety Performance Functions (SPFs): statistical "base" models that are used to estimate the predicted average crash frequency for specific site types with base conditions.
 - SPFs are typically a function of a number of variables, such as AADT.
 - **Crash Modification Factors (CMFs)**: the ratio of the effectiveness of one condition in comparison to another condition. CMFs are used to account for the difference between the specific site conditions and the base conditions.
 - e.g., the SPF for roadway segments has a base condition of 12-ft lane width, but the specific site may be a roadway segment with a 10-ft lane width.
 - **Calibration factor** (**C**): is used to account for differences between the jurisdiction and time period.

$$N_{predicted} =$$

$SPF \times (CMF_1 \times CMF_2 \times ...) \times C$

where:

SPF = Safety Performance Function
CMF = Crash Modification Factor
C = Calibration Factor

$$N_{expected} = N_{predicted} \oplus N_{observed}$$

- Advantages
 - Regression-to-the-mean bias is addressed as the method concentrates on long-term expected average crash frequency rather than short-term observed crash frequency;
 - Reliance on availability of limited crash data for any one site is reduced by incorporating predictive relationships based on data from many similar sites;
 - The predictive method provides a method of crash estimation for sites or facilities that have not been constructed or have not been in operation long enough to make an estimate based on observed crash data;

- Advantages (cont.)
 - The method accounts for the fundamentally nonlinear relationship between crash frequency and traffic volume.

Safety Performance Functions

- SPFs in HSM are
 - regression equations that estimate the average crash frequency for a specific site type (with specified base conditions) as a function of annual average daily traffic (AADT) and, in the case of roadway segments, the segment length (L).

Safety Performance Functions

• A SPF for roadway segments on rural two-lane highways:

 $N_{SPF \ /s} = (AADT) \times (L) \times (365) \times 10^{(-6)} \times e^{(-0.4865)}$

where *AADT* = annual average daily traffic volume (v/d) on road way segment. *L*: length of roadway segment (miles)

• A SPF for four-leg signalized intersections:

 $N_{spf 4SG} = exp[-5.13 + 0.60 \times ln(AADT_{maj}) + 0.20 \times ln(AADT_{min})]$

where $AADT_{maj} = AADT (v/d)$ on the major road. $AADT_{min} = AADT (v/d)$ on the minor road.

Safety Performance Functions

The SPF for Four-leg Signalized Intersections

- Multivariate models
- Fitted to crash data
- Statistical relationship between the number of crashes and factors causally related to crashes

- Choice of explanatory variables
 - Crash rate (or risk) is traditionally defined as the number of crashes per unit of exposure

Crash Rate = <u>
Average Crash Frequency in a Period</u> <u>
Exposure in Same Period</u>

- Expected number of crashes = Exposure \times Risk
- Therefore, the explanatory variables:
 - Variables describing exposure
 - Risk factors

- Choice of explanatory variables
 - The usual basis for choosing explanatory variables appears to be simply **data availability.**
 - Explanatory variables should:
 - have been found in previous studies to have a major influence on the number of crashes;
 - can be measured in a valid and reliable way;
 - are not very highly correlated with other explanatory variables included.

- Variables that are usually included:
 - exposure variable (e.g., vehicle kilometers traveled)
 - variables describing the transport function of the road (motorway, main arterial, ...)
 - variables describing cross section (number of lanes, lane width, shoulder width, ...)
 - variables describing traffic control (speed limit, type of traffic control at intersections, ...)
- Variables that are less often included:
 - variables describing alignment
 - estimates of pedestrian and cyclist exposure
 - variables describing road user behavior

- Choice of model form
 - The basic form of nearly all modern crash prediction models:

 $\mathsf{E}(\lambda) = \alpha \mathsf{Q}^{\beta} \mathsf{e}^{\sum \gamma_i x_i}$

- A power function is applied for exposure, and
- An exponential function applied for risk factors.
- Additive, linear models are rarely used. Why?
 - e.g., negative predicted number of crashes.

- Generalized linear models (GLM)
 - A flexible generalization of ordinary linear regression that allows for response variables that have error distribution models other than a normal distribution.

• The GLM consists of three components:

- A random component
 - specifying the conditional distribution of the response variable (e.g., Poisson, binomial, gamma, ...)
- A linear predictor
 - a linear function of regressors

$$\eta_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik}$$

- The GLM consists of three components (cont.):
 An invertible link function g(·)
 - transforming the expectation of the response variable $(\mu_i \equiv E(Y_i))$

$$g(\mu_i) = \eta_i$$

Link	$\eta_i = g(\mu_i)$	$\mu_i = g^{-1}(\eta_i)$
Identity	μ_i	η_i
Log	$\log_e \mu_i$	e^{η_i}
Inverse	μ_i^{-1}	η_{i}^{-1}
Inverse-square	μ_i^{-2}	$\eta_i^{-1/2}$
Square-root	$\sqrt{\mu_i}$	η_i^2
Logit	$\log_{e} \frac{\mu_i}{1 - \mu_i}$	$\frac{1}{1 + e^{-\eta_i}}$

- Evaluation of goodness of fit
 - Log-likelihood ratio
 - Pearson's chi-squared test
 - Mean deviance ratio
 - Akaike's Information Criterion (AIC)
 - The Freeman-Tukey index
 - t-Statistic
 - Elvik index

- Total variation = Random variation + Systematic variation
- Only the systematic part can be explained by means of crash prediction models
- Systematic variation is caused whenever the variance > the mean
 - This is referred to as overdispersion

$$\operatorname{Var}(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$
$$\frac{\operatorname{Var}(x)}{\mu} - 1 \qquad \lambda: \text{ o}$$
$$\mu: \text{ n}$$

 λ : overdispersion parameter μ : mean

	Distribution of road sections by number of fatalities		Accident prediction model		
Number of fatalities	Actual	Poisson	Negative binomial	Explanatory variables	Coeff.
0	19,957	19,728	19,974	Constant	-7.154
1	895	1274	854	In(AADT)	0.842
2	135	41	163	Speed limit 50 km/h	Reference category
3	43	1	39	Speed limit 60 km/h	-0.020
4	9	0	10	Speed limit 70 km/h	0.385
5	3	0	3	Speed limit 80 km/h	0.172
6	1	0	1	Speed limit 90 km/h, rural road	0.090
7	0	0	0	Speed limit 90 km/h, class B road	0.610
8	1	0	0	Speed limit 90 km/h, class A road	0.879
Ν	21,044	21,044	21,044	Number of lanes	-1.967
				Number of intersections/km	0.082
				Dummy for trunk road	0.255
Mean	0.0646				
Variance	0.0976			Estimated variance	0.0745
Overdispersion parameter	7.91			Overdispersion parameter	2.39

Predictive performance assessment
 predictive models ≠ explanatory models

Perfectly reproducing the data it was fitted to, yet giving badly wrong predictions for future years.

- Predictive performance assessment
 - Using the model to predict crash counts in future years
 - Splitting data into "training set" and "test set"
- Cross-validation technique
 - Exhaustive cross-validation
 - Leave-one-out cross-validation
 - Leave-p-out cross-validation
 - Non-exhaustive cross-validation
 - 2-fold cross-validation
 - k-fold cross-validation
 - Repeated random sub-sampling validation

- Potential sources of errors
 - Omitted variable bias (mostly exposure variables)
 Number of pedestrian accidents = 0.0000734 x MV^{0.50} x PED^{0.72}
 - MV from 5,000 to 10,000
 - PED from 500 to 1000
 - PED from 100 to 1000
 - PED from 1000 to 2000
 - What if PED was not included in the model?
 - MV's exponent would change from 0.5 to 0.9
 - MV's coefficient contains part of the effect of pedestrian volume when that is not included

- Potential sources of errors (cont.)
 - (Multi)co-linearity among explanatory variables
 - Lead to unstable estimates of the coefficients
 - Variance Inflation Factor (VIF) test
 - Wrong functional form for relationships between variables
 - Occurs when a single function is used while relationship varies, depending on circumstances, e.g., day-time vs. night-time crashes.
 - Occurs when traffic volume is represented by an average value, like AADT rather than actual data, e.g., traffic volume varies during the day and from day to day.

• A CMF is an index that quantifies the change in crash frequency at a site as a result of implementing a specific treatment or countermeasure.

 $CMF_i = \frac{\text{expected crash frequency if change } i \text{ is made}}{\text{expected crash frequency if change } i \text{ is not made}}$

- CMF vs. CRF
 - Crash Reduction Factor (CRF) assumes a reduction in crashes due to implementing a countermeasure.
 - Example: if CMF for a treatment is 0.88, what is the corresponding CRF?

CMF = 0.88 => expected crashes after treatment is 88% of crashes before treatment.

CRF = 1.00 - CMF

i.e., 1.00 - 0.88 = 0.12, or 12% reduction

- CMFs are estimated based on statistical analyses of reported crash data
 - Before-after studies (with or without comparison group)
 - The same set of sites are used and the CMF is estimated by examining safety performance before the treatment is implemented and after the treatment is implemented.
 - A comparison group of sites is used to provide a baseline for how safety performance changes when the treatment is not applied.
 - Cross-sectional studies (with or without regression)
 - Identify sites both with and without treatment in the same time period to compare how the treatment impacts safety performance.
 - Regression is used to help control for the impacts of other factors that might have.

- Each CMF value only applies to a very specific set of conditions.
 - Area type: urban, suburban, rural

0

- Crash type: all, run-off-road, night, multi-vehicle, etc.
- Crash severity: fatality, serious injury, slight injury, PDO
- Roadway volumes: typically measured in AADT
- Roadway geometry: number of lanes, number of legs at an intersection, etc.
- Traffic control: speed limit, type of intersection control, etc.

- Example:
 - Improperly defined: CMF for edgeline rumble strips
 - Properly defined: CMF for edgeline rumble strips on fatal run-off-the-road crashes on two-lane rural roads
- Reasons for set of conditions
 - Specific countermeasures/treatments only impact a specific subset of crash types.
 - Same countermeasure/treatment in different contexts or driving environments may have different effects.
 - CMFs are sometimes estimated with only a certain type of reported crash data.

- CMF applications
 - Infrastructure treatments
 - Widening lanes or shoulders
 - Install rumble strips
 - Traffic control
 - Signing, pavement markings
 - Signalization
 - Operational strategies
 - Access management (e.g., driveway closure, median closures)
 - Maintenance strategies
 - Anti-icing applications
 - Enforcement strategies
 - Automated enforcement

About CMFs | Find CMFs | Submit CMFs | Resources | Contact

Quick Search

Featured Resource: Desktop Reference for Crash Reduction Factors

Developed by the Federal Highway Administration, the Desktop Reference is a compilation of CRFs relating to intersections, roadway departure and other non-intersection crashes, and pedestrian crashes.

A crash modification factor (CMF) is a multiplicative factor used to compute the expected number of crashes after implementing a given countermeasure at a specific site. The Crash Modification Factors Clearinghouse houses a Web-based database of CMFs along with supporting documentation to help

Recently Added CMFs

Design diamond, trumpet or cloverleaf interchange	Physical channelization of left-turn lane on major road	Flashing beacons at four leg stop controlled intersections
CMF: 0.96	CMF: 0.73	CMF: 0.87
CRF: 4	CRF: 27	CRF: 13

www.cmfclearinghouse.org

CMF	CRF(%)	Quality	Crash Type	Crash Severity	Roadway Type	Area Type	Reference
<u>0.71 ^[B]</u>	<u>29</u>	*****	All	Serious injury,Minor injury	Minor Arterial	Urban	<u>Elvik, R. and Vaa,</u> <u>T., 2004</u>

Category:Advanced technology and ITS

Countermeasure: Install red-light cameras at intersections

CMF	CRF(%)	Quality	Crash Type	Crash Severity	Roadway Type	Area Type	Reference
<u>0.84</u> [В]	<u>16</u>	****	Angle	Serious injury,Minor injury	Not specified	Urban	Persaud et al., 2005
<u>1.24 ^[B]</u>	<u>-24</u>	****	Rear end	Serious injury,Minor injury	Not specified	Urban	Persaud et al., 2005

Category:Highway lighting

Countermeasure: Illumination

CMF	CRF(%)	Quality	Crash Type	Crash Severity	Roadway Type	Area Type	Reference
<u>0.62 ^[В]</u>	<u>38</u>	****	All	Serious injury,Minor injury	Not specified	Not specified	<u>Elvik, R. and Vaa,</u> <u>T., 2004</u>

www.cmfclearinghouse.org

- Example use of CMFs
 - Two-lane rural highway segment
 - AADT 2008 = 4494 v/d
 - Current: 12' lanes
 - Proposed: 11' lanes

Year	Total segment
	crashes
2006	26
2007	19
2008	17
Total	62
Average	20.67

What will be the expected number of crashes after change?

• Example use of CMFs

Exhibit 13-2: AMF for Lane Width on Rural Two-Lane Roadway Segments⁽¹⁶⁾

Lane Width	Average Annual Daily Traffic (AADT) (vehicles/day)					
	< 400	< 400 400 to 2000				
9 ft or less	1.05	1.05+2.81x10 ⁻⁴ (AADT-400)	1.50			
1 0 ft	1.02 1.02+1.75x10 ⁻⁴ (AADT-		1.30			
11 ft	1.01	1.01+2.5x10 ⁻⁵ (AADT-400)	1.05			
12 ft or more	1.00	1.00	1.00			

NOTE: The collision types related to lane width to which these AMFs apply are single-vehicle run-off the-road and multiple-vehicle head-on, opposite-direction sideswipe, and same-direction sideswipe accidents.

Standard error of the AMF is unknown.

• Example use of CMFs

Year	Total segment	Run-off-the-road, head-on		
	crashes	and sideswipe crashes		
2006	26	10		
2007	19	13		
2008	17	10		
Total	62	33		
Average	20.67	11.00		

11.00 / 20.67 = 0.53 or 53%

• Example use of CMFs

CMF Conversion:

$$CMF = [(CMF_{ra} - 1.0) \times p_{ra}] + 1.0$$

where

CMF: Crash Modification Factor for total crashes CMF_{ra} : Crash Modification Factor for related crashes p_{ra} : proportion of total crashes constituted by related crashes

> 11' lane width with $CMF_{ra} = 1.05$ $p_{ra} = 0.53$

$$CMF = [(1.05 - 1.0) \times 0.53] + 1.0$$

= 1.0265

• CMFs can be multiplied together to estimate the combined effects of different countermeasures/ treatments that have independent effects.

 $N_{predicted} = N_{base \ condition} \times (CMF_1 \times CMF_2 \times)$

Example

Treatment 'x' consists of providing a left-turn lane on both major-road approaches to an urban four-leg signalized intersection and treatment 'y' is permitting right-turn-on-red maneuvers. These treatments are to be implemented and it is assumed that their effects are independent of each other. An urban four-leg signalized intersection is expected to have 7.9 accidents/year. For treatment t_{xr} AMF_x = 0.81; for treatment t_{yr} AMF_y = 1.07.

What accident frequency is to be expected if treatment x and y are both implemented?

expected accidents = $7.9 \times 0.81 \times 1.07 = 6.8$ accidents/year.

- Errors in CMFs
 - Errors may exist due to:
 - Type of statistical model
 - Amount of crash data
 - Variation in crash data
 - Crash data reporting
- Numerical value of a CMF is a point estimate
 - Subject to some amount of uncertainty

- Standard error of the CMF
 - Most studies not only provide the point estimate of the CMF but also provide an estimate of the amount of error associated with the point estimate.
- Standard error gives indication of precision
 - Small standard error \rightarrow precise estimate
 - Large standard error \rightarrow imprecise estimate

- Confidence interval (CI) for CMF
 - Combine point estimate and standard error to estimate the range that the true CMF value is believed to lie within.

$$CI_{CMF} = P_{CMF} \pm z \times ERROR$$

where *z* is associated with the level of certainty or confidence that we would like to have.

Type of confidence interval	Z value
90% confidence interval	1.64
95% confidence interval	1.96
99% confidence interval	2.58

• Using CI provides a better indication of expected impacts of a countermeasure/treatment.

Calibration Factor

- The main purpose of the calibration procedure is to adjust predictive models that were developed with data from on jurisdiction for application in another jurisdiction.
- Calibration provides a method to account for difference between jurisdictions:
 - Climate
 - Driver populations
 - Animal populations
 - Crash reporting thresholds
 - Crash reporting system procedures

Calibration Factor

- The calibration procedure involves five steps:
 - Step 1 Identify facility types for which the predictive model is to be calibrated
 - Step 2 Select sites for calibration of the predictive model for each facility type
 - Step 3 Obtain data for each facility type applicable to a specific calibration period
 - Step 4 Apply the predictive model to predict total crash frequency for each site during the calibration period as a whole
 - Step 5 Compute calibration factors

Calibration Factor

- Example:
 - The SPF for four-leg signalized intersections on rural two-lane roads is

 $N_{spf\,4SG} = exp[-5.13 + 0.60 \times ln(AADT_{maj}) + 0.20 \times ln(AADT_{min})]$

- The base conditions are
 - No Left turn lanes on any approach
 - No Right turn lanes on any approach

1	2	3	4	5	6	7	8	9	10
ADTmat	ADTmin	SPF Prediction	Intersection Approaches with Left- Turn Lanes	AMF1	Intersection Approaches With Right- Turn Lane	AMF ₂	Years of Data	Predicted Average Crash Frequency	Observed Crash Frequency
4000	2000	2.152	1	0.67	1	0.98	3	4.240	4
3000	1500	1.710	0	1.00	2	0.95	2	3.249	5
5000	3400	2.736	0	1.00	2	0.95	3	7.799	10
6500	3000	3.124	0	1.00	2	0.95	3	8.902	5
3600	2300	2.078	1	0.67	1	0.98	3	4.093	2
4600	4500	2.753	0	1.00	2	0.95	3	7.846	8
5700	3300	2.943	1	0.67	1	0.98	3	5.796	5
6800	1500	2.794	1	0.67	1	0.98	2	3.669	4
						Su	Im	45.594	43
						Calib	ration F	actor (C _i)	0.943

• In HSM, the predictive method provides an 18 step procedure to estimate the expected average crash frequency of a site, facility, or roadway network.

- Step 1 Determine data needs
 - Facility type
 - Study period
 - Site conditions (geometry, traffic control, etc.)
 - Traffic volume (vehicles/day)
- Step 2 Divide locations into homogeneous segments or intersections
 - Number of lanes
 - Type of intersections
 - Alignment change
 - Change in roadside conditions
 - Change in traffic volume

• Step 3 Identify and apply the appropriate SPF

2-Lane Rural Highway

Multilane Rural Highway

Urban Arterial

- Step 4 Apply CMFs to calculated SPF values
 - Review applicable SPF "base case"
 - Determine how study site differs from "base case"
 - Select CMFs for road type and typical features
 - Multiply SPF value by applicable CMFs

- Step 5 Apply local calibration factor
 - "C" adjusts SPF-derived crash estimates to reflect local conditions
 - Each SPF requires its unique "C"

- Supplemental steps
 - Repeat basic steps (time period)
 - Apply site-specific EB method
 - Repeat basic steps (next study site)
 - Apply project-level EB method
 - Calculate total expected crashes
 - Evaluate alternate design
 - Evaluate and compare results

Summary

$$N_{predicted} =$$

$SPF \times (CMF_1 \times CMF_2 \times ...) \times C$

where:

SPF = Safety Performance Function
CMF = Crash Modification Factor
C = Calibration Factor

$$N_{expected} = N_{predicted} \oplus N_{observed}$$